The Evolution of Data in Recruitment Management

Recruiters know that data is the key to improving hiring. Over the years, what data is available and how to use it has changed.

 

 Introducing the Applicant Tracking System

 

If you have been around an exceedingly LONG time like myself, besides being “ancient,” as my daughters like to say, you also remember how exciting it was to have an automated system with standard reports for recruiting. The new automated tracking systems (ATS) allowed us access to data with a click of the button.  You could see how many applicants in a period applied to a specific location or how many employee referrals you hired over the year.  The magic of having EEO reports at our fingertips was pure joy.

 

Standard Reports Became Standard & Custom Became King

 

ATS’s were building new standard reports at lightning speed. Companies were competing to see who could offer the most standard reports.  Then recruiters began to demand custom reports. Suddenly, we had access to hundreds of standard reports and the ability to have custom reports.  These reports helped with compiling data to give us a good overview of our hiring process.  It’s unfortunate that even with the availability of reporting and data, there wasn’t any impact on our future hiring decisions.

 

Light Up the Dashboards

 

Once reports were no longer exciting, dashboards with graphical representations of data were the new trend.  A recruiter could start the day by opening a dashboard with all the critical data represented graphically. The graphs made it easy for recruiters to share metrics with management.  The graphics could be quickly added to a PowerPoint presentation with a quick screenshot.

Soon benchmark reports were added to the dashboards.  We could see how we were doing compared to others in our industry or compare how we did in the past.  The goal of benchmark reports was to identify problems quickly by using these comparisons.

We also saw the move to reporting meant to give us answers to questions like why “time to hire” was so long or why so many applicants declined job offers. With all this data so easily accessible, there were high hopes in improving meaningful business outcomes.  Regrettably, all this data did not analyze itself.  Recruiters were still missing key data points around new hires and employee data. Again, we were still unable to improve business outcomes like increasing retention rates or making better-quality hires.

 

Welcome to the New Age

 

A whole new idea emerged called Predictive Analytics. This new type of data science allowed us to look forward using past data.  A great idea if your past hiring decisions were without issues. But if you hired poorly in the past, you don’t want to reuse that data.  If you do, then you’re going to repeat those poor hiring decisions.

 

And the Even Newer Age

 

Over the last couple of years, the science of data analytics has continued to improve. It’s ushered in the era of business intelligence for recruitment - where augmented intelligence, analytics, and data modeling are combined in one model for data-driven decision making.  This type of data model is smart. It continues to learn as new data is available, improving the model, enabling hiring decisions to get better over time.

 

Looking Ahead

 

The one thing we’ve learned is that data must be easy to understand and apply in real-life situations to have any impact on business decisions. Reports are great, but recruiters need augmented intelligence, analytics, and modeling to make data-driven decisions.

Data science in recruitment is still a new field, and its applications are only starting to be understood. We should expect to see a continued focus on improving business outcomes with data science in the recruiting space. 

 

Enjoyed this article? You may like "AI From a Layman's Perspective" or "Let's Get Analytical".

 

Shirley Gingrich

Senior Solution Consultant